

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

13th December 2022

Our Reference: 22405:NB1424

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

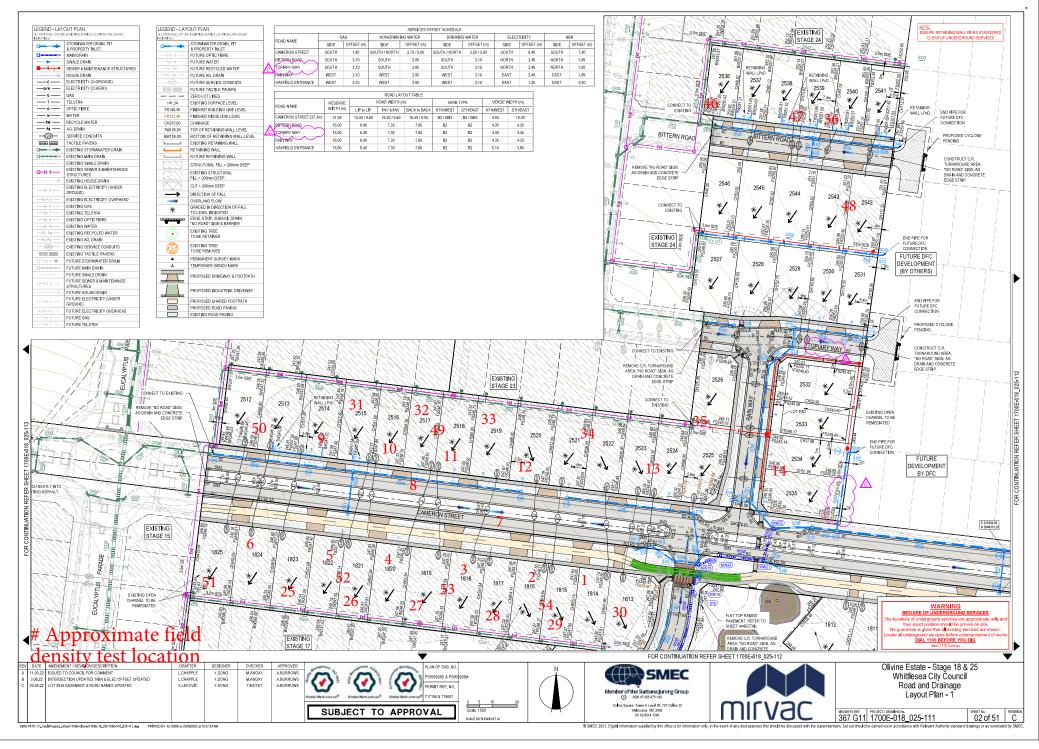
RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING OLIVINE – STAGE 18 & 25 (DONNYBROOK)

Please find attached our Report No's 22405/R001 to 22405/R015 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in July 2022 and was completed in September 2022.

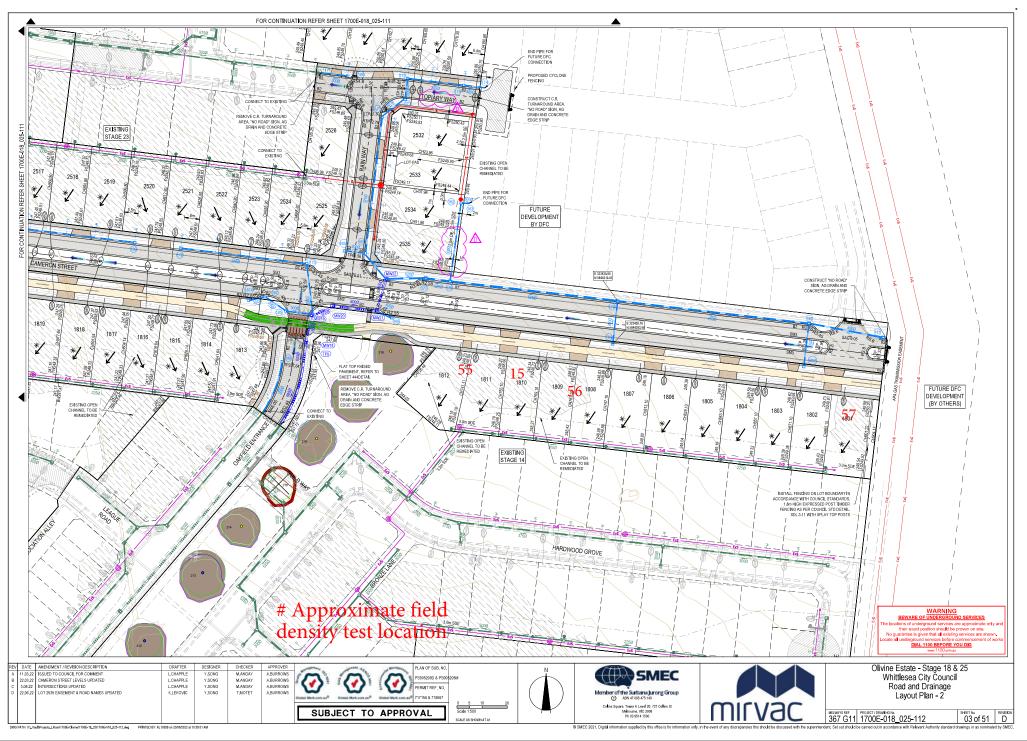
The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).


Please contact the undersigned if you require any additional information.

Civil Geotechnical Services


Nick Brock

22405: NB1424 December 2022

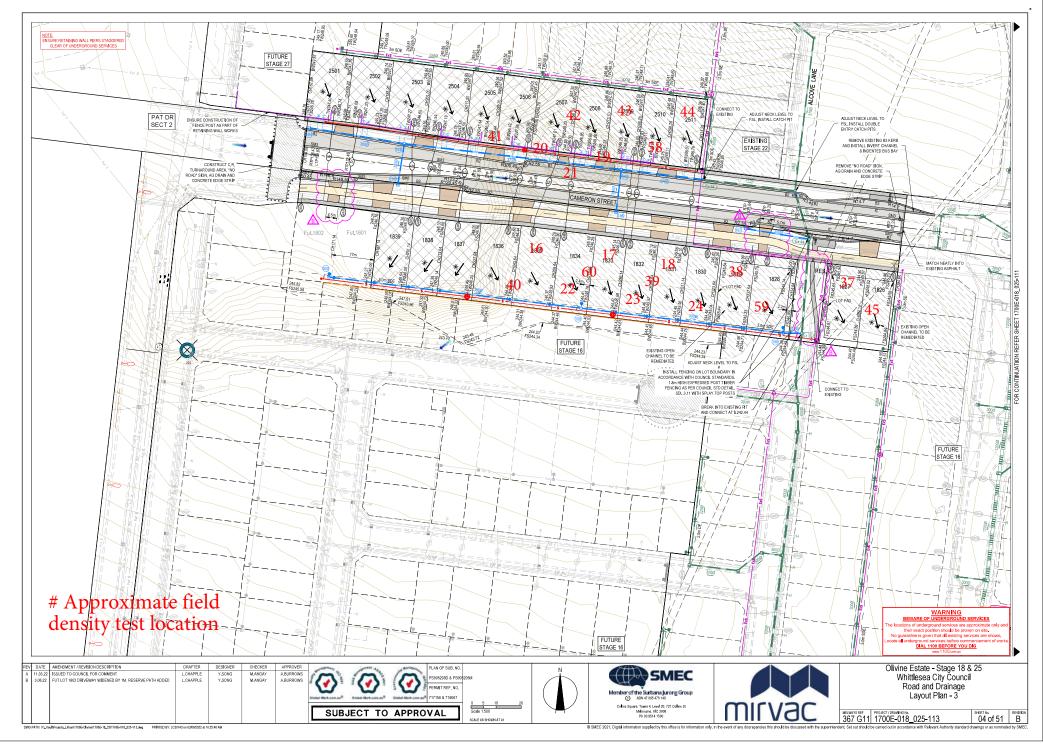

FIGURE 1 (1 of 3)

FIGURE 1 (2 of 3)

FIGURE 1 (3 of 3)

	CHNICAL SERVICES ue, Croydon 3136					Job No Report No Date Issued	
Client Project Location	WINSLOW CONSTRUCT OLIVINE - STAGES 18 & DONNYBROOK	AMPBELLFIE	ELD)		Tested by Date tested Checked by		
Feature	EARTHWORKS	l av	er thickness	200	mm	Tim	e: 12:01
realure							
Test proce	dure AS 1289.2.1.1 & 5.8.1						
			2	3	-		

			2	3			
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.85	1.84	1.85	-	-	-
Field moisture content	%	22.5	27.0	24.1	-	-	-
Test No Compactive effort		1	2	3 Stan	- dard	-	-
	mm	1 19.0	2 19.0	-		-	-
Compactive effort	mm wet			Stan	dard		
Compactive effort Oversize rock retained on sieve		19.0	19.0	Stan 19.0	dard		
Compactive effort Oversize rock retained on sieve Percent of oversize material	wet	19.0 0	19.0 0	Stan 19.0 0	dard - -	-	-
Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	wet t/m³	19.0 0	19.0 0	Stan 19.0 0	dard - - -	-	-
Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	wet t/m³ t/m³	19.0 0 1.89 - 22.5	19.0 0 1.87 - 26.5	Stan 19.0 0 1.90 - 23.5	dard - - - -	- - - -	-
Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³ t/m³	19.0 0 1.89 -	19.0 0 1.87	Stan 19.0 0 1.90 -	dard - - - -	- - - -	-
Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	wet t/m³ t/m³	19.0 0 1.89 - 22.5	19.0 0 1.87 - 26.5	Stan 19.0 0 1.90 - 23.5	dard - - - -	- - - -	-
Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	wet t/m³ t/m³ %	19.0 0 1.89 - 22.5 0.0%	19.0 0 1.87 - 26.5 0.0%	Stan 19.0 0 1.90 - 23.5 0.5% wet	dard - - - - -	- - - - -	- - - - -

Material description

No 1 - 3 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

	CHNICAL SERVICES ue, Crovdon 3136	Job No Report No Date Issued	22405 22405/R002 06/08/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	25/07/22
Location	DONNYBROOK	Checked by	JHF

Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 12:03

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		4	5	6	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL		'		 	<u> </u>	<u> </u> '	
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.82	1.82	1.81	-	-	-
Field moisture content	%	24.6	24.4	26.4	-	-	-
Test No Compactive effort		4	5	6 Stan	- ndard	-	-
Compactive effort				Stan	ndard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0		-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.91	1.88	1.87		- '	-
Adjusted Peak Converted Wet Density	t∕m³	- '	- "	- !		- '	-
Optimum Moisture Content	%	26.5	24.5	25.0	-	-	-
Moisture Variation From		2.0%	0.0%	1.5%	-	-	-
		1 . '	1	wet		1	
Optimum Moisture Content		dry		wei			
	relate c		il to the dept		not to the ful	I depth of the) layer

Material description

No 4 - 6 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

	CHNICAL SERVICES ue, Croydon 3136 WINSLOW CONSTRU OLIVINE - STAGES 18		PTY LTD (CA	MPBELLFIE	ELD)		Report No Date Issued Tested by	22405 22405/R00 06/08/2022 AC
Location	DONNYBROOK	0 & 25					Date tested27/07/22Checked byJHF	
Feature	EARTHWORKS		Lav	er thickness	200	mm	Time	12:03
Test proce	dure AS 1289.2.1.1 & 5.	8.1						
Test No			7	8	9	-	- 1	-
Location								
			REFER	REFER	REFER			
			то	то	то			
			FIGURE 1	FIGURE 1	FIGURE 1			
	e depth below FSL				475			
Measureme	•	mm	175	175	175	-	-	-
Field wet de		t/m³	1.92	1.88	1.82	-	-	-
Field moistu	ire content	%	28.7	28.4	23.4	-	-	-
Testaroos	dura AC 1000 E Z 1							
Test Proce	dure AS 1289.5.7.1		7	8	9	_	-	-
Compactive	offort		1	0	Stan		-	-
	ck retained on sieve	mm	19.0	19.0	19.0	-	-	-
	versize material	wet	0	0	0			-
	erted Wet Density	t/m ³	1.95	1.90	1.87			-
	ak Converted Wet Density		-	-	-	-		-
	oisture Content	% %	28.5	28.5	23.5			-
Optimum M		70	20.0	20.0	23.0	-	-	-
Moi	sture Variation From		0.0%	0.0%	0.0%	-	-	-
Optin	num Moisture Content							
densit	ty and moisture ratio result	s relate o	only to the so	il to the dept	h of test and i	not to the	full depth of th	e layer
Donsity Ra	tio (R)	%	99.0	98.5	97 5	-		· .
Density Ra	tio(R _{HD})	%	99.0	98.5	97.5	-	-	-
Material								
Material des	scription							
No 7 - 9	Clay Fill							

CIVIL GEOTEO	Job No CIVIL GEOTECHNICAL SERVICES Report No Data laguad							
6 - 8 Rose Avent	Date Issued	06/08/2022						
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC					
Project	OLIVINE - STAGES 18 & 25	Date tested	28/07/22					
Location	DONNYBROOK	Checked by	JHF					

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 12:08

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		10	11	12	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL	1	· · · · · ·	· · · · · · · · · · · · · · · · · · ·				
Measurement depth	тт	175	175	175	-	-	-
Field wet density	t/m³	1.88	1.89	1.89		-	-
Field moisture content	%	22.1	21.5	21.8	-	-	-

Test procedure AS 1289.5.7.1

Test No		10	11	12	-	-	-
Compactive effort				Star	ndard		
Oversize rock retained on sieve	тт	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.90	1.90	1.91	-	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	22.5	20.0	20.0	-	-	-

Density Ratio (R _{HD})	%	99.0	99.0	99.0	-	-	-	
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer								
Optimum Moisture Content		dry	wet	wet				
Moisture Variation From		0.5%	1.5%	2.0%	-	-	-	

Material description

No 10 - 12 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

8 Rose Avenue, (IICAL SERVICES Croydon 3136 WINSLOW CONSTRUCT						Job No Report No Date Issued Tested by	22405 22405/R00 13/12/2022 AC
Project (DLIVINE - STAGES 18 &				20)		Date tested Checked by	29/07/22 JHF
Feature E	EARTHWORKS		Lay	er thickness	200 m	ım	Time	: 12:01
-	ə AS 1289.2.1.1 & 5.8.	1						
Test No			13	14	15	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate de								
Measurement de	-	mm	175	175	175	-	-	-
Field wet densit		t/m³ %	1.83 24.3	1.85 24.9	1.85 23.5	-	-	-
Test No Compactive effo	e AS 1289.5.7.1		13	14	15 Standa	- ard	-	-
Oversize rock re	etained on sieve	тт	19.0	19.0	19.0	-	-	-
Percent of overs		wet	0	0	0	-	-	-
Peak Converted	-	t∕m³	1.87	1.89	1.92	-	-	-
-	Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moistu	ire Content	%	26.0	26.5	24.5	-	-	-
Moistur	e Variation From		1.5%	1.5%	1.0%	-	-	-
	Moisture Content		dry	dry	dry			
density or	nd moisture ratio results i	elate c	only to the so	il to the deptl	h of test and ne	ot to the	full depth of th	ne layer
uchaity al	(R _{HD})	%	97.5	98.0	96.5	-	-	-

CIVIL GEOTE	CIVIL GEOTECHNICAL SERVICES Job No Report No Report No							
6 - 8 Rose Avenue, Croydon 3136 Date Issued								
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC					
Project	OLIVINE - STAGES 18 & 25	Date tested	01/08/22					
Location	DONNYBROOK	Checked by	JHF					

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 12:03

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		16	17	18	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.85	1.84	1.83	-	-	-
Field moisture content	%	22.5	22.9	24.3	-	-	-

Test procedure AS 1289.5.7.1

Test No		16	17	18	-	-	-
Compactive effort				Star	ndard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.92	1.88	1.89	-	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	22.5	21.5	23.5	-	-	-

Density Ratio(R _{HD})	%	96.0	98.0	97.0	-	-	-			
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer										
Optimum Moisture Content			wet	wet						
Moisture Variation From		0.0%	1.5%	0.5%	-	-	-			

Material description

No 16 - 18 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Project OLIVINE Location DONNYB Feature EARTHW Test procedure AS 128 Test procedure AS 128 Test No Location Approximate depth below Measurement depth Field wet density	ORKS 89.2.1.1 & 5.8.1	25	· · ·	er thickness 20 REFER TO	200 21 REFER TO	Da Cr mm 22 REFER	ate tested necked by	AC 02/08/22 JHF 13:26 24 REFER
Feature EARTHW Test procedure AS 128 Test procedure AS 128 Test No Location Approximate depth below Measurement depth Field wet density Field moisture content	39.2.1.1 & 5.8.1	1	19 REFER TO	20 REFER TO	21 REFER	22 REFER	23 REFER	24
Test No Location Approximate depth below Measurement depth Field wet density		1	REFER TO	REFER TO	REFER	REFER	REFER	
Location Approximate depth below Measurement depth Field wet density	r FSL		REFER TO	REFER TO	REFER	REFER	REFER	
Approximate depth belov Measurement depth Field wet density	r FSL		то	то				REFER
Measurement depth Field wet density	' FSL				FIGURE 1	TO FIGURE 1	FIGURE 1	TO FIGURE 1
Field wet density								
		тт	175	175	175	175	175	175
Field mainture content		t/m³ %	1.87 19.2	1.86 21.3	1.92 18.8	1.85 21.7	1.85 24.3	1.92 24.9
Test procedure AS 128 Test No Compactive effort			19	20	21 Stan	22 dard	23	24
Oversize rock retained or	n sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize mate	rial	wet	0	0	0	0	0	0
Peak Converted Wet Der		t∕m³	1.96	1.94	1.96	1.91	1.94	2.02
Adjusted Peak Converted		t∕m³	-	-	-	-	-	-
Optimum Moisture Conte	nt	%	21.0	24.0	21.5	24.0	27.0	28.0
Moisture Variatio	n From		1.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Optimum Moisture	Content		dry	dry	dry	dry	dry	dry
density and moistu	re ratio results re	elate o	only to the so	il to the deptl	h of test and	not to the ful	I depth of the	alayer
Density Ratio (R _{HD})		%	95.5	96.0	98.0	96.5	95.5	95.5

CIVIL GEOTE	CHNICAL SERVICES	Job No Report No	22405 22405/R008
6 - 8 Rose Avenu	ie, Croydon 3136	Date Issued	16/08/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	03/08/22
Location	DONNYBROOK	Checked by	JHF

Feature EARTHWORKS Layer thickness 200 mm Time: 13:58

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		25	26	27	28	29	30
Location		1					
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
	I	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
	I						
	I						
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.87	1.84	1.87	1.85	1.86	1.86
Field moisture content	%	19.4	20.5	18.6	18.1	19.5	21.2
Test No Compactive effort		25	26	27 Stan	28 dard	29	30
1		40.0	40.0	I		40.0	10.0
Oversize rock retained on sieve Percent of oversize material	mm	19.0	19.0 0	19.0 0	19.0 0	19.0	19.0 0
	wet t/m³	0	-	-	-	0	-
Peak Converted Wet Density	4	1.91	1.89	1.94	1.89	1.90	1.89
Adjusted Peak Converted Wet Density Optimum Moisture Content	t/m³ %	22.0	22.0	- 21.5	- 20.5	- 22.0	- 22.0
Optimum Moisture Coment	70	22.0	22.0	21.5	20.5	22.0	22.0
Moisture Variation From		2.5%	1.5%	2.5%	2.5%	2.5%	1.0%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
density and moisture ratio results	relate c	only to the so	il to the deptl	h of test and	not to the ful	I depth of the	ayer
		98.0	98.0	96.5	98.0	98.5	98.5

Material description

No 25 - 30 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing AVRLOT HILF V1.10 MAR 13

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	22405 22405/R009
6 - 8 Rose Avenu	e, Croydon 3136	Date Issued	16/08/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	04/08/22
Location	DONNYBROOK	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 14:57

Test procedure AS 1289.2.1.1 & 5.8.1

	31	32	33	34	35	36
	REFER	REFER	REFER	REFER	REFER	REFER
	то	то	то	то	то	то
	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE
mm	175	175	175	175	175	175
t∕m³	1.86	1.86	1.84	1.85	1.89	1.87
%	17.2	22.3	21.0	17.8	17.8	20.6
						-
	31	32	33	34	35	36
			Stan	ndard	-	
тт	19.0	19.0	19.0	19.0	19.0	19.0
wet	0	0	0	0	0	0
t∕m³	1.92	1.90	1.89	1.94	1.95	1.94
t∕m³	-	-	-	-	-	-
%	19.5	25.0	23.0	20.5	20.0	23.0
	2.0%	2.5%	2.0%	2.5%	2.0%	2.5%
						dry
s relate c		il to the depth				
		97.5	97.0	95.5	97.0	96.5
	t/m ³ % mm wet t/m ³ %	TO FIGURE 1 mm 175 t/m³ 1.86 % 17.2 31	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

CIVIL GEOTEO	CHNICAL SERVICES	Job No Report No	22405 22405/R010
6 - 8 Rose Avenu	ie, Croydon 3136	Date Issued	17/08/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	08/08/22
Location	DONNYBROOK	Checked by	JHF

Feature EARTHWORKS Layer thickness 200 mm	<i>Time:</i> 13:28
---	--------------------

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		37	38	39	40	41	42
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE [·]
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.87	1.86	1.88	1.85	1.86	1.89
Field moisture content	%	24.9	24.4	22.2	18.6	18.3	26.0
Test No Compactive effort		37	38	39 Star	40 ndard	41	42
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m³	1.96	1.95	1.96	1.92	1.92	2.00
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	26.5	26.5	25.0	21.0	20.5	27.5
Moisture Variation From		1.5%	2.0%	2.5%	2.5%	2.5%	1.5%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
density and moisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the ful	I depth of the	ayer
		96.0	96.0	96.5	96.5	97.0	95.0

Material description

No 37 - 42 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	22405 22405/R011
6 - 8 Rose Avenu	e, Croydon 3136	Date Issued	17/08/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	12/08/22
Location	DONNYBROOK	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 09:58

Test procedure AS 1289.2.1.1 & 5.8.1

	ļ	43	44	45	-	-	-
Location				fi			
	ļ	REFER	REFER	REFER			
	ŀ	TO	TO	TO			
	ŀ	FIGURE 1	FIGURE 1	FIGURE 1			
	I	TIOUNE !		TIOUNE .			
	I						
	ļ						
Approximate depth below FSL							
Measurement depth	тт	175	175	175	-	-	-
Field wet density	t∕m³	1.85	1.88	1.86	-	-	-
Field moisture content	%	31.5	31.1	30.4	-	-	-
Test No]	43	44	45 Stan	- dard	-	-
Compactive effort	!				ndard	•	1
	mm	19.0	19.0	19.0	-	-	-
Oversize rock retained on sieve		-		-			
Percent of oversize material	wet	0	0	0	-	-	-
Percent of oversize material Peak Converted Wet Density	wet t/m³	0 1.91	0 1.92	0 1.90	-	-	-
Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³ t/m³	1.91	1.92	1.90	- - -		
Percent of oversize material Peak Converted Wet Density	wet t/m³	-	-	-	- - - -	- - - -	- - - -
Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³ t/m³	1.91	1.92	1.90	- - -	-	- - -
Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³ t/m³	1.91	1.92	1.90	- - -	-	- - - -
Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	wet t/m³ t/m³	1.91 - 34.0	1.92 - 33.0	1.90 - 33.0	- - - -	-	- - - -
Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	wet t/m³ t/m³ %	1.91 - 34.0 2.5% dry	1.92 - 33.0 2.0% dry	1.90 - 33.0 2.5% dry	-	-	-
Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	wet t/m³ t/m³ %	1.91 - 34.0 2.5% dry	1.92 - 33.0 2.0% dry	1.90 - 33.0 2.5% dry	-	-	

No 43 - 45 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

8 Rose Aven Client Project Location	ue, Croydon 3136 WINSLOW CONSTRU OLIVINE - STAGES 18 DONNYBROOK	PTY LTD (CA	MPBELLFIE		Date Issued Tested by Date tested Checked by	05/09/2022 AC 12/08/22 JHF		
Feature	EARTHWORKS		Lay	er thickness	200 m	ım	Time	: 14:26
-	dure AS 1289.2.1.1 & 5.	8.1					_	
Test No			46	47	48	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	e depth below FSL							
Measureme		тт	175	175	175	-	-	-
Field wet de	nsity	t∕m³	1.84	1.85	1.83	-	-	-
Test proce	dure AS 1289.5.7.1							
Test No			46	47	48	-	-	-
Compactive					Stand	ard		
Oversize roo	ck retained on sieve	тт	19.0	19.0	19.0	-	-	-
	versize material	wet	0	0	0	-	-	-
	erted Wet Density	t∕m³	1.87	1.91	1.90	-	-	-
-	ak Converted Wet Density		-	-	-	-	-	-
Optimum Mo	pisture Content	%	22.0	25.5	19.5	-	-	-
Mois	sture Variation From		0.5%	2.5%	2.5%	-	-	-
Optin	num Moisture Content		dry	dry	dry			
densit	y and moisture ratio result	s relate c	only to the so	il to the deptl	h of test and n	ot to the	full depth of th	ie layer
Density Rat	tio(R _{HD})	%	98.5	97.0	96.5	-	-	- 1
Density Ra t Material des	tio (R _{HD})		-	-		-		-

Approved Signatory : Justin Fry

CIVIL GEOTE	CHNICAL SERVICES	Job No Report No	22405 22405/R013
6 - 8 Rose Aven	ue, Croydon 3136	Date Issued	05/09/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	16/08/22
Location	DONNYBROOK	Checked by	JHF

 Feature
 EARTHWORKS
 Layer thickness
 200 mm
 Time: 08:02

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		49	50	51	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL			<u>├</u>			'	<u> </u>
Measurement depth	mm	175	175	175	·	-	-
Field wet density	t∕m³	1.86	1.87	1.86	·		
Field moisture content	%	29.4	24.0	25.6	- '	-	-
Test No Compactive effort		49	50	51 Stan	- ndard	-	-
•	!		<u> </u>		dard	<u> </u>	
Oversize rock retained on sieve	mm	19.0	19.0	19.0	<u>⊢ - '</u>	- <u>'</u>	<u> </u>
Percent of oversize material	wet	0	0	0	-	<u> </u>	
Peak Converted Wet Density	t/m³	1.95	1.92	1.95	<u>⊢ - '</u>	- <u>'</u>	
Adjusted Peak Converted Wet Density	t∕m³	<u> </u>	<u> </u>	<u> </u>	<u> </u>	- '	-
Optimum Moisture Content	%	32.0	27.0	27.5	-	-	-
Moisture Variation From		2.5%	2.5%	1.5%	<u> </u>	· · ·	-
Optimum Moisture Content	!	dry	dry	dry	L'	['	<u> </u>
density and moisture ratio results r	relate c	only to the so	il to the dept	n of test and	not to the ful	l depth of the	e layer
							·

Material description

No 49 - 51 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

CIVIL GEOTE	CHNICAL SERVICES	Job No Report No	22405 22405/R014
6 - 8 Rose Avenu	ue, Croydon 3136	Date Issued	20/09/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	22/08/22
Location	DONNYBROOK	Checked by	JHF

FeatureEARTHWORKSLayer thickness200 mmTime: 12:36

Test procedure AS 1289.2.1.1 & 5.8.1

Test No	1	52	53	54	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL]	<u> </u> '	<u> </u> '	 '	<u> </u> '	<u> </u> '	<u> </u>
Measurement depth	тт	175	175	175	-	-	-
Field wet density	t∕m³	1.84	1.84	1.85	-	- '	-
Field moisture content	%	28.1	28.3	25.1	-	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort		52	53	54 Stan	- ndard	-	-
•	!			1	Idard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	<u> </u>	-	
Percent of oversize material	wet	0	0	0	-	<u> </u>	
Peak Converted Wet Density	t∕m³	1.90	1.91	1.92	<u> </u>	<u> </u>	-
Adjusted Peak Converted Wet Density	t∕m³	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	-
Optimum Moisture Content	%	28.5	29.5	25.0	-	-	-
Moisture Variation From	<u> </u>	0.5%	1.0%	0.0%	- '	- '	-
Optimum Moisture Content	!	dry	dry			<u> </u> '	
density and moisture ratio results	relate c	only to the so	il to the dept	n of test and	not to the ful	l depth of the	layer
		97.5	96.5	96.5		· · · · · · · · · · · · · · · · · · ·	(

Material description

No 52 - 54 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	22405 22405/R015
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	14/09/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	OLIVINE - STAGES 18 & 25	Date tested	05/09/22
Location	DONNYBROOK	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 11:03

Test procedure AS 1289.2.1.1 & 5.8.1

	55	56	57	58	59	60
	REFER	REFER	REFER	REFER	REFER	REFER
	то	то	то	то	то	то
	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE
	-	-		-	-	175
						1.84
%	20.2	15.6	22.1	20.0	27.1	22.5
		50	F7	50	50	<u> </u>
	55	56	_		59	60
	10.0	40.0			10.0	10.0
						19.0
	-	Ţ	÷	-	÷	0
-	1.91	1.93	1.96	1.92	1.91	1.90
-	-	-	-	-	-	-
%	22.0	18.0	23.5	20.0	28.5	23.5
	1.5%	2.0%	1.5%	0.0%	1.5%	1.0%
	dry	dry	dry		dry	dry
	, i	ý		not to the ful	· · · ·	
relate o	only to the so	in to the dept	n or test and			
	mm t/m³ % mm wet t/m³ %	REFER TO FIGURE 1 mm 175 t/m³ 1.84 % 20.2 55 1 mm 19.0 wet 0 t/m³ 1.91 t/m³ - % 22.0	$\begin{array}{c cccc} REFER \\ TO \\ FIGURE 1 \\ \hline TO \\ FIGUR$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry